58 research outputs found

    PatchMixer: Rethinking network design to boost generalization for 3D point cloud understanding

    Full text link
    The recent trend in deep learning methods for 3D point cloud understanding is to propose increasingly sophisticated architectures either to better capture 3D geometries or by introducing possibly undesired inductive biases. Moreover, prior works introducing novel architectures compared their performance on the same domain, devoting less attention to their generalization to other domains. We argue that the ability of a model to transfer the learnt knowledge to different domains is an important feature that should be evaluated to exhaustively assess the quality of a deep network architecture. In this work we propose PatchMixer, a simple yet effective architecture that extends the ideas behind the recent MLP-Mixer paper to 3D point clouds. The novelties of our approach are the processing of local patches instead of the whole shape to promote robustness to partial point clouds, and the aggregation of patch-wise features using an MLP as a simpler alternative to the graph convolutions or the attention mechanisms that are used in prior works. We evaluated our method on the shape classification and part segmentation tasks, achieving superior generalization performance compared to a selection of the most relevant deep architectures.Comment: Published in the Image and Vision Computing journa

    Distinctive 3D local deep descriptors

    Full text link
    We present a simple but yet effective method for learning distinctive 3D local deep descriptors (DIPs) that can be used to register point clouds without requiring an initial alignment. Point cloud patches are extracted, canonicalised with respect to their estimated local reference frame and encoded into rotation-invariant compact descriptors by a PointNet-based deep neural network. DIPs can effectively generalise across different sensor modalities because they are learnt end-to-end from locally and randomly sampled points. Because DIPs encode only local geometric information, they are robust to clutter, occlusions and missing regions. We evaluate and compare DIPs against alternative hand-crafted and deep descriptors on several indoor and outdoor datasets consisting of point clouds reconstructed using different sensors. Results show that DIPs (i) achieve comparable results to the state-of-the-art on RGB-D indoor scenes (3DMatch dataset), (ii) outperform state-of-the-art by a large margin on laser-scanner outdoor scenes (ETH dataset), and (iii) generalise to indoor scenes reconstructed with the Visual-SLAM system of Android ARCore. Source code: https://github.com/fabiopoiesi/dip.Comment: IEEE International Conference on Pattern Recognition 202

    Multi-target tracking and performance evaluation on videos

    Get PDF
    PhDMulti-target tracking is the process that allows the extraction of object motion patterns of interest from a scene. Motion patterns are often described through metadata representing object locations and shape information. In the first part of this thesis we discuss the state-of-the-art methods aimed at accomplishing this task on monocular views and also analyse the methods for evaluating their performance. The second part of the thesis describes our research contribution to these topics. We begin presenting a method for multi-target tracking based on track-before-detect (MTTBD) formulated as a particle filter. The novelty involves the inclusion of the target identity (ID) into the particle state, which enables the algorithm to deal with an unknown and unlimited number of targets. We propose a probabilistic model of particle birth and death based on Markov Random Fields. This model allows us to overcome the problem of the mixing of IDs of close targets. We then propose three evaluation measures that take into account target-size variations, combine accuracy and cardinality errors, quantify long-term tracking accuracy at different accuracy levels, and evaluate ID changes relative to the duration of the track in which they occur. This set of measures does not require pre-setting of parameters and allows one to holistically evaluate tracking performance in an application-independent manner. Lastly, we present a framework for multi-target localisation applied on scenes with a high density of compact objects. Candidate target locations are initially generated by extracting object features from intensity maps using an iterative method based on a gradient-climbing technique and an isocontour slicing approach. A graph-based data association method for multi-target tracking is then applied to link valid candidate target locations over time and to discard those which are spurious. This method can deal with point targets having indistinguishable appearance and unpredictable motion. MT-TBD is evaluated and compared with state-of-the-art methods on real-world surveillanceThis work was supported by the EU, under the FP7 project APIDIS (ICT-216023) and the Artemis JU and TSB as part of the COPCAMS project (332913)

    Revisiting Fully Convolutional Geometric Features for Object 6D Pose Estimation

    Full text link
    Recent works on 6D object pose estimation focus on learning keypoint correspondences between images and object models, and then determine the object pose through RANSAC-based algorithms or by directly regressing the pose with end-to-end optimisations. We argue that learning point-level discriminative features is overlooked in the literature. To this end, we revisit Fully Convolutional Geometric Features (FCGF) and tailor it for object 6D pose estimation to achieve state-of-the-art performance. FCGF employs sparse convolutions and learns point-level features using a fully-convolutional network by optimising a hardest contrastive loss. We can outperform recent competitors on popular benchmarks by adopting key modifications to the loss and to the input data representations, by carefully tuning the training strategies, and by employing data augmentations suitable for the underlying problem. We carry out a thorough ablation to study the contribution of each modification.Comment: 17 pages. Preprint, currently under revie

    Data augmentation for NeRF: a geometric consistent solution based on view morphing

    Full text link
    NeRF aims to learn a continuous neural scene representation by using a finite set of input images taken from different viewpoints. The fewer the number of viewpoints, the higher the likelihood of overfitting on them. This paper mitigates such limitation by presenting a novel data augmentation approach to generate geometrically consistent image transitions between viewpoints using view morphing. View morphing is a highly versatile technique that does not requires any prior knowledge about the 3D scene because it is based on general principles of projective geometry. A key novelty of our method is to use the very same depths predicted by NeRF to generate the image transitions that are then added to NeRF training. We experimentally show that this procedure enables NeRF to improve the quality of its synthesised novel views in the case of datasets with few training viewpoints. We improve PSNR up to 1.8dB and 10.5dB when eight and four views are used for training, respectively. To the best of our knowledge, this is the first data augmentation strategy for NeRF that explicitly synthesises additional new input images to improve the model generalisation

    Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

    Full text link
    Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.Comment: TPAMI. arXiv admin note: text overlap with arXiv:2207.0977

    Survey on video anomaly detection in dynamic scenes with moving cameras

    Full text link
    The increasing popularity of compact and inexpensive cameras, e.g.~dash cameras, body cameras, and cameras equipped on robots, has sparked a growing interest in detecting anomalies within dynamic scenes recorded by moving cameras. However, existing reviews primarily concentrate on Video Anomaly Detection (VAD) methods assuming static cameras. The VAD literature with moving cameras remains fragmented, lacking comprehensive reviews to date. To address this gap, we endeavor to present the first comprehensive survey on Moving Camera Video Anomaly Detection (MC-VAD). We delve into the research papers related to MC-VAD, critically assessing their limitations and highlighting associated challenges. Our exploration encompasses three application domains: security, urban transportation, and marine environments, which in turn cover six specific tasks. We compile an extensive list of 25 publicly-available datasets spanning four distinct environments: underwater, water surface, ground, and aerial. We summarize the types of anomalies these datasets correspond to or contain, and present five main categories of approaches for detecting such anomalies. Lastly, we identify future research directions and discuss novel contributions that could advance the field of MC-VAD. With this survey, we aim to offer a valuable reference for researchers and practitioners striving to develop and advance state-of-the-art MC-VAD methods.Comment: Under revie

    Novel-View Human Action Synthesis

    Full text link
    Novel-View Human Action Synthesis aims to synthesize the movement of a body from a virtual viewpoint, given a video from a real viewpoint. We present a novel 3D reasoning to synthesize the target viewpoint. We first estimate the 3D mesh of the target body and transfer the rough textures from the 2D images to the mesh. As this transfer may generate sparse textures on the mesh due to frame resolution or occlusions. We produce a semi-dense textured mesh by propagating the transferred textures both locally, within local geodesic neighborhoods, and globally, across symmetric semantic parts. Next, we introduce a context-based generator to learn how to correct and complete the residual appearance information. This allows the network to independently focus on learning the foreground and background synthesis tasks. We validate the proposed solution on the public NTU RGB+D dataset. The code and resources are available at https://bit.ly/36u3h4K.Comment: Asian Conference on Computer Vision (ACCV) 202

    Cloud-based collaborative 3D reconstruction using smartphones

    Get PDF
    This article presents a pipeline that enables multiple users to collaboratively acquire images with monocular smartphones and derive a 3D point cloud using a remote reconstruction server. A set of key images are automatically selected from each smartphone’s camera video feed as multiple users record different viewpoints of an object, concurrently or at different time instants. Selected images are automatically processed and registered with an incremental Structure from Motion (SfM) algorithm in order to create a 3D model. Our incremental SfM approach enables on-the- y feedback to the user to be generated about current reconstruction progress. Feedback is provided in the form of a preview window showing the current 3D point cloud, enabling users to see if parts of a surveyed scene need further attention/coverage whilst they are still in situ. We evaluate our 3D reconstruction pipeline by performing experiments in uncontrolled and unconstrained real-world scenarios. Datasets are publicly available

    1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

    Full text link
    The 1st^{\text{st}} Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.Comment: MaCVi 2023 was part of WACV 2023. This report (38 pages) discusses the competition as part of MaCV
    • …
    corecore